The following tutorial, adapted from the MLFlow documentation, shows how to track model training and register the trained model with MLFlow on Nuvolos:
# The data set used in this example is from http://archive.ics.uci.edu/ml/datasets/Wine+Quality# P. Cortez, A. Cerdeira, F. Almeida, T. Matos and J. Reis.# Modeling wine preferences by data mining from physicochemical properties. In Decision Support Systems, Elsevier, 47(4):547-553, 2009.
import osimport warningsimport sysimport pandas as pdimport numpy as npfrom sklearn.metrics import mean_squared_error, mean_absolute_error, r2_scorefrom sklearn.model_selection import train_test_splitfrom sklearn.linear_model import ElasticNetfrom urllib.parse import urlparseimport mlflowimport mlflow.sklearnimport logginglogging.basicConfig(level=logging.WARN)logger = logging.getLogger(__name__)defeval_metrics(actual,pred): rmse = np.sqrt(mean_squared_error(actual, pred)) mae =mean_absolute_error(actual, pred) r2 =r2_score(actual, pred)return rmse, mae, r2if__name__=="__main__": mlflow.set_tracking_uri("http://localhost:8080") mlflow.set_experiment("Wine Quality") warnings.filterwarnings("ignore") np.random.seed(40)# Read the wine-quality csv file from the URL csv_url = ("http://archive.ics.uci.edu/ml/machine-learning-databases/wine-quality/winequality-red.csv" )try: data = pd.read_csv(csv_url, sep=";")exceptExceptionas e: logger.exception("Unable to download training & test CSV, check your internet connection. Error: %s", e )# Split the data into training and test sets. (0.75, 0.25) split. train, test =train_test_split(data)# The predicted column is "quality" which is a scalar from [3, 9] train_x = train.drop(["quality"], axis=1) test_x = test.drop(["quality"], axis=1) train_y = train[["quality"]] test_y = test[["quality"]] alpha =float(sys.argv[1])iflen(sys.argv)>1else0.5 l1_ratio =float(sys.argv[2])iflen(sys.argv)>2else0.5with mlflow.start_run(): lr =ElasticNet(alpha=alpha, l1_ratio=l1_ratio, random_state=42) lr.fit(train_x, train_y) predicted_qualities = lr.predict(test_x) (rmse, mae, r2) =eval_metrics(test_y, predicted_qualities)print("Elasticnet model (alpha=%f, l1_ratio=%f):"% (alpha, l1_ratio))print(" RMSE: %s"% rmse)print(" MAE: %s"% mae)print(" R2: %s"% r2) mlflow.log_param("alpha", alpha) mlflow.log_param("l1_ratio", l1_ratio) mlflow.log_metric("rmse", rmse) mlflow.log_metric("r2", r2) mlflow.log_metric("mae", mae) tracking_url_type_store =urlparse(mlflow.get_tracking_uri()).scheme# Model registry does not work with file storeif tracking_url_type_store !="file":# Register the model# There are other ways to use the Model Registry, which depends on the use case,# please refer to the doc for more information:# https://mlflow.org/docs/latest/model-registry.html#api-workflow mlflow.sklearn.log_model(lr, "model", registered_model_name="ElasticnetWineModel")else: mlflow.sklearn.log_model(lr, "model")